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Abstract
The general development in the natural sciences from relative comparison to
absolute description forces the current relative protein structure comparison,
based on similarity measures, to be supplemented, or even replaced, by absolute
description of each individual protein structure. This paper addresses the
question of what should be required from a good set of protein structure
descriptors. As an example a Gauss integral based family of protein structure
descriptors, that has been shown to successfully classify the geometry of
CATH2.4 connected protein domains, is examined. The CATH2.4 domains are
here observed to break a symmetry under reversal of the direction of traversal
of the protein backbone that general folded tubes possess. It is thus a challenge
for any large scale protein or polymer model to explain this broken symmetry.

1. Introduction

The definition and naming of groups is an important part of the natural sciences known
as classification. Biology has a long tradition of classification pioneered by Aristotle (384–
322 BC) and continued by great naturalists including Carl von Linné and Charles Darwin.
In modern times, the huge amount of data in molecular biology has created the need for
classification at the molecular level including the classification of proteins [1, 2]. The
classification of proteins includes information of various types, the most important being their
sequences of amino acids, their three-dimensional native folded structures, and their biological
or industrial functions.

In the history of the natural sciences, relative comparison of new samples to the known and
best described samples is often replaced by absolute description of all samples. Considering
structural classification of proteins, this corresponds to replacing the use of similarity measures
by absolute description of each protein structure. Furthermore, to ensure that a descriptor is
clear in its objective, available information that is not geometric in nature is ignored, such as
sequences of amino acids and the function of proteins when known. To guide the development
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of descriptors that can fulfil this task, a list of demands for a good set of descriptors is proposed
in section 2. Depending on the focus of interest, the preferred set of descriptors may change.
However, when structural classification is the issue, the ability of a set of descriptors to separate
folds is central. The only set of protein structure descriptors that has been demonstrated
to separate folds consists of 30 descriptors that are based on so-called generalized Gauss
integrals [3]. An introduction to these Gauss integrals is given in section 3. In this paper,
these Gauss integrals are tuned to meet the proposed descriptor demands as well as possible
in section 4. Two of these Gauss integrals were used for protein structure description prior to
the work of the author of this paper. These are the writhe used by Levitt [4] and the average
crossing number used by Arteca [5]. In comparison, there is much more literature on DNA
and these two descriptors [6–10]. In section 5 we discuss which of the descriptors are best
for protein structure description. Finally, in sections 6 and 7 it is observed that the set of all
CATH2.4 protein domains quantitatively differs itself from general compact folded structures,
challenging our understanding of the protein folding process.

2. Demands for a good set of descriptors

Any number that can be associated with a protein structure in a unique way such that it is
independent of translation and rotation of the protein structure serves as a descriptor of protein
structures. Obvious examples are the volume, the radius of gyration, the moments of inertia
around the principal axes, and the accessible surface area that, like other bulk descriptors,
describe the protein structure as seen from the outside.

Some descriptors belong naturally to one particular level of the hierarchical division of
protein structure into primary, secondary, and tertiary structure. The geometry of the primary
structure is given by the length of the protein when imposing a tube picture onto protein
structures. At the secondary level, the contents of secondary-structure elements directly and
the more geometrical notions of total curvature and total torsion or twist are natural descriptors.
Examples of descriptors that measure the tertiary structure are average occurrences of crossing
patterns when averaged over all planar projections [11] and a family of generalized Gauss
integrals [3, 12].

To propose some demands that a good set of protein structure descriptors,
{D1, D2, . . . , DN }, should fulfil, denote two protein structures by P1 and P2. Each protein
structure P defines a feature vector {D1(P), D2(P), . . . , DN (P)} and we equip N-space with
the usual Euclidean metric and refer to it as the feature space.

(A) Each descriptor must depend continuously on self-avoiding deformations of protein
structures.

(B) The set of descriptors must induce a ‘nice’ pseudo-metric on the space of protein
structures. That is, the usual Euclidean distance in N-space from (D1(P1), . . . , DN (P1))

to (D1(P2), . . . , DN (P2)) should be comparable with, e.g., the coordinate root mean
square RMSc(P1, P2) if P1 and P2 are highly similar.

(C) The set of descriptors must separate protein folds, i.e. ‘P1 �= P2 ⇒ Di (P1) �= Di (P2)’
for some i .

(D) The set of descriptors should be non-redundant.
(E) Finally, each descriptor should have a high signal-to-noise ratio.

Re point (A). The continuity demand is not fulfilled by the secondary-structure content,
by the total torsion or the more general notion of twist [13], and also not by the most
probable overcrossing number [14] as argued in [12]. Each of the tertiary-structure descriptors
mentioned above depends continuously on self-avoiding deformation of protein structures.
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However, some of these tertiary-structure descriptors will make finite discontinuous jumps if
a deformation lets the backbone pass through itself. An example is given in section 3.

Re point (B). The number of descriptors, N , is expected to be smaller than the number
of degrees of freedom of a protein chain. Many protein configurations thus will have the
same feature vector and the metric in feature space gives rise only to a pseudo-metric in the
configuration space of protein chains. Point (C) therefore demands that when restricted to
natively folded protein structures this pseudo-metric is strong enough to separate folds.

A variety of similarity measures have been applied for protein structure comparison [15–
19]. Many similarity measures are based on the coordinate root mean square, RMSc, or get
close to RMSc for small deformations of a protein structure. This is the reason that the ‘nice’
pseudo-metric demand above refers to RMSc as the local metric. It is however not beyond doubt
that RMSc is the best local metric for basing protein structure similarity measures on [20–22]
and in general comparison of methods for structural comparison [21–24] is important.

The natural metric to impose on the set of all configurations of a protein is from a
geometrical point of view the minimal deformation that can deform the protein from one
configuration to another configuration through self-avoiding configurations not counting
rotation and translation. Here the size of a deformation is the integral over the entire
deformation of the local deformation as measured by RMSc or any other local (Riemannian)
metric. A way to think of this metric, known as the geodesic distance in the configuration space
of the protein, is as the minimal area spanned by the backbone as it undergoes a deformation
between two configurations. The area–Cα distance [20] is geometrically similar but does not
require deformations to go through self-avoiding configurations.

A deformation that takes the backbone through itself can be made by moving at the
most 6–8 carbon alpha atoms 3 Å. The Chebyshev (max norm) used in [20] is for this

deformation 3 Å and for a 100-residue protein the RMSc is of the order of
(
8 × (3 Å)2/100

) 1
2 ≈

0.85 Å, significantly below the ‘folklore’ rule of thumb saying that an RMSc below 3 Å implies
high structural similarity. In contrast to this, a global self-avoiding deformation distance would
be large for this self-intersecting example. Local perturbation metrics such as RMSc cannot
detect topological changes, but a global deformation metric will probably remain impossible
to calculate for many years.

Structural descriptors offer extremely fast all-against-all structural comparison once the
descriptor values are calculated for each protein structure. This is since structural comparison is
reduced to comparison of points in the feature space, i.e., to comparison of points in Euclidean
N-space, where N is the number of descriptors used. In [3] more than 30 000 pairwise compar-
isons a second were performed using this technique. The metric on feature space gets as close
to RMSc as possible for self-avoiding deformations of protein structures when a set of structural
descriptors is rescaled to meet the ‘nice’ pseudo-metric demand as well as possible. However,
the distance in feature space is free to jump whenever a self-intersecting deformation occurs.
Hence, by this rescaling of a set of descriptors, the constructed pseudo-metric reconstructs the
global deformation metric as well as possible when given the set of original descriptors and
when given the demand of having the usual Euclidean metric in the final feature space.

Re point (C). The demand ‘separation of folds’ is currently poorly defined as it is not clear
how to define protein folds and furthermore it is not clear which cluster methods one should
allow in feature space. In a jackknife test 96% of more than 20 000 CATH2.4 domains were
correctly identified as belonging to either an existing fold class or to a new fold class [3]. The
descriptors used in [3] are based on the number of residues and 29 Gauss integrals. To the
author’s knowledge, this set of descriptors is the only set that has been demonstrated to separate
CATH2.4 domains. The average occurrences of crossing patterns [11] may also separate folds.
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Figure 1. On the unit sphere the filled area corresponds to normals of planes in which the two
projected line segments are seen to cross. The two line segments are seen to cross with a probability
|W | equal to the filled area divided by the area of the whole sphere when averaged over all directions
in space. If the line segment in the front is traversed upward and the rear line segment is traversed
from right to left or if both line segments are traversed in the opposite direction a positive crossing
is seen and W is positive. Otherwise a negative crossing is seen and W is negative.

(This figure is in colour only in the electronic version)

Re point (D). A descriptor DN is said to be redundant if there exists a function f fulfilling
f (D1 (P) , . . . , DN−1 (P)) ≈ DN (P) for all native protein structures P . In general f could
be any type of function, but for a given set of descriptors there are probably certain functions
that are natural to consider. The number of residues in a protein structure is assumed to always
be known. Hence, the range of any other structural descriptor should be independent of the
number of residues.

Re point (E). The idea behind the signal-to-noise ratio of a structural descriptor presented
below is to divide the standard deviation of a descriptor on a representative set of protein
structures by the average change of the descriptor when small perturbations are applied to the
protein structures.

3. Introduction to Gauss integrals

A short introduction to the family of generalized Gauss integrals is included here for the
reader’s convenience. The natural definition of the writhe for a polygonal space curve µ is

I(1,2) (µ) = Wr (µ) =
∑

0<i1<i2<N

W (i1, i2), (1)

where W (i1, i2) equals the probability of seeing the i1th and i2th line segments cross when
averaged over all directions in space times the sign of this crossing, using the usual right-hand
rule [12, 25]; see figure 1. An explicit and exact formula for W for given line segments is
given in [12, 25]. The writhe has the geometrical interpretation of being the signed average
number of crossings seen when averaged over all directions in space. The unsigned average
number of crossings seen from all directions is known as the average crossing number and is
given by
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Table 1. The first column contains the 29 Gauss integrals considered and the pairs mentioned in
section 7 are labelled with ‘a’ to ‘f’. The second column contains the correlation coefficient for
each Gauss integral and its estimate based on 1053 homology class representatives of CATH2.4.
The third column contains the rates at which each Gauss integral and the Gauss integral minus
its estimate grow with the number of residues. These growth rates are based on 927 homology
class representative domains of CATH2.4 with lengths between 60 and 759 residues. On changing
the set of protein domains used, most of these growth rates may change by up to ±0.1. The fifth
column contains the differential geometric signal-to-noise ratio introduced in section 2. The last
two columns give the author’s choice of descriptors and their relative priorities.

Correlation Growth rate Signal-to-noise ratio
Gauss integral coefficient I/(I − E) I/(I − E) Choice Priority

I(1,2) — 0.92 1.91 I 4
I|1,2| 0.989 1.37/1.00 0.63/0.64 I − E 19
I(1,2)(3,4) 0.997 1.89/1.01 1.56/1.19 I − E 7
I|1,2|(3,4) a 0.978 2.26/2.16 1.51/0.79 I − E 14
I(1,2)|3,4| a 0.989 2.26/2.13 1.46/0.74 I − E 16
I|1,2||3,4| 0.987 2.68/2.13 0.87/1.19 I − E 6
I(1,3)(2,4) 0.853 0.90/0.88 0.73/0.56 I 17
I|1,3|(2,4) b 0.759 1.64/1.68 2.49/1.40 I 3
I(1,3)|2,4| b 0.758 1.76/1.69 2.76/1.51 I 2
I|1,3||2,4| 0.957 2.56/2.17 1.16/1.12 I − E 8
I(1,4)(2,3) 0.565 1.32/1.48 1.29/1.17 I 5
I|1,4|(2,3) 0.928 2.43/1.93 1.37/1.03 I − E 10
I(1,4)|2,3| 0.396 1.80/1.99 2.83/1.59 I 1
I|1,4||2,3| 0.977 2.76/2.36 0.89/1.05 I − E 9
I(1,2)(3,4)(5,6) 1.000 2.90/1.53 1.59/0.67 I − E 18
I(1,2)(3,5)(4,6) c 0.995 1.88/1.96 1.11/0.36 I − E 27
I(1,2)(3,6)(4,5) d 0.952 2.65/2.11 1.05/0.84 I − E 12
I(1,3)(2,4)(5,6) c 0.995 1.86/2.07 1.07/0.35 I − E 29
I(1,3)(2,5)(4,6) 0.400 1.69/1.69 0.35/0.33 I 28
I(1,3)(2,6)(4,5) e 0.531 2.09/2.14 0.45/0.42 I 24
I(1,4)(2,3)(5,6) d 0.965 2.81/1.86 1.14/0.88 I − E 11
I(1,4)(2,5)(3,6) 0.264 1.24/1.19 0.45/0.43 I 23
I(1,4)(2,6)(3,5) f 0.572 1.38/1.23 0.39/0.38 I 26
I(1,5)(2,3)(4,6) e 0.502 2.19/2.09 0.43/0.47 I 25
I(1,5)(2,4)(3,6) f 0.557 2.14/2.10 0.48/0.46 I 22
I(1,5)(2,6)(3,4) 0.132 1.80/1.83 0.54/0.53 I 21
I(1,6)(2,3)(4,5) 0.907 2.04/2.16 1.11/0.81 I − E 13
I(1,6)(2,4)(3,5) 0.848 1.19/0.96 0.75/0.54 I 15
I(1,6)(2,5)(3,4) 0.466 2.24/2.23 0.60/0.58 I 20

I|1,2| (µ) =
∑

0<i1<i2<N

|W (i1, i2)|. (2)

The first-order Gauss integral writhe and average crossing number constitute the basic
building blocks of a family of generalized Gauss integrals. The following second- and third-
order Gauss integrals serve as examples:

I|1,3|(2,4) (µ) =
∑

0<i1<i2<i3<i4<N

|W (i1, i3)|W (i2, i4) (3)

I(1,5)(2,4)(3,6) (µ) =
∑

0<i1<i2<i3<i4<i5<i6<N

W (i1, i5)W (i2, i4)W (i3, i6). (4)

Table 1 lists all the Gauss integrals considered in both this paper and in [3]. These integrals
are inspired by integral formulae [26, 27] for the Vassiliev knot invariants [28]. The reason for
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Figure 2. Two tubes with the signs of the crossings seen in this projection. Note that just one
crossing is changed from the right-hand side tube to the left-hand side tube.

naming the integrals after Gauss is that the writhe of a smooth space curve, and hereby also
the W (i1, i2)s involved in the above sums, stems from the integral found by Gauss to calculate
the number of times that two space curves are linked into each other.

Consider the axis of each tube in figure 2 to be given by a polygonal curve. When the two
tubes are squeezed down to almost lie in the plane of this paper, the W (i, j)s in the formulae
for the Gauss integrals tend either to −1, to 0 (zero), or to +1 as follows. If the line segments
i and j are seen to lie apart in the figure, then in the planar limit they will lie apart and in the
same plane. The set of directions from which they are seen to cross will diverge to a set of two
arcs with measure zero on the unit 2-sphere. That is, W (i, j) tends to zero. However, if the
two line segments are seen to cross in the planar projection that they are squeezed into, then in
the limit they are seen to cross from all directions on the unit 2-sphere. Hereby, W (i, j) tends
to ±1 depending on the sign of the crossing; see figure 1.

The writhe of the left tube in figure 2 is I(1,2)(Tleft) ≈ 3 × (+1) + 2 × (−1) = +1 and
that of the right tube is I(1,2)(Tright) ≈ 2 × (+1) + 3 × (−1) = −1. In fact the writhe always
jumps in steps of ±2 when self-intersections occur. In contrast to this, the average crossing
number ignores signs of crossings and is ≈5 for both tubes. A non-zero term in I(1,2)(3,4) =∑

0<i1<i2<i3<i4<N W (i1, i2)W (i3, i4) requires that line segments i1 and i2 are seen to cross, that
line segments i3 and i4 are seen to cross, and that 0 < i1 < i2 < i3 < i4 < N . This requirement
is equivalent to saying that two crossings are needed and that the line segments corresponding to
one of the crossings have to lie downstream of the other crossing. The pair consisting of the two
negative crossings, which is the same for the two tubes, is the only pair of crossings fulfilling
this demand. Hence, I(1,2)(3,4)(Tright) ≈ I(1,2)(3,4)(Tleft) ≈ (−1)×(−1) = +1. A non-zero term
in I(1,4)(2,3) = ∑

0<i1<i2<i3<i4<N W (i1, i2)W (i3, i4) requires that line segments i1 and i4 are seen
to cross, that line segments i2 and i3 are seen to cross, and that 0 < i1 < i2 < i3 < i4 < N .
Any pair consisting of one positive and one negative crossing fulfils these requirements on
the left tube in figure 2. Thus, I(1,4)(2,3)(Tleft) ≈ (+1 + 1 + 1) × (−1 − 1) = −6. Similarly
I(1,4)(2,3)(Tright) ≈ (−1 + 1 + 1) × (−1 − 1) = −2. Note that the discontinuous jump of a
generalized Gauss integral on a self-intersecting deformation depends on the entire fold and
on the combinatorics of the particular Gauss integral.

4. Tuning Gauss integrals to meet the proposed set of descriptor demands

The number of residues together with the 29 simplest Gauss integrals are shown to separate
protein folds in [3]. This corresponds to point (C) in the list of demands in section 2 as
previously mentioned. Here, this set of protein structure descriptors is tuned to meet the
remaining descriptor demands as well as possible. All these descriptors depend continuously
on self-avoiding deformations—see point (A).
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Figure 3. Left: the writhe, I(1,2), versus the Gauss integral I(1,2)(3,4) for a set of 1053 representatives
of distinct homology classes of CATH2.4. Right: the logarithm of the average crossing probability,
|W (i1, i2)|, against the logarithm of the backbone distance when averaged over 283 domains with
100 residues. The leftmost point of the graph is averaged over 98 × 283 = 27 734 residue pairs
with distance 2 and the rightmost point is averaged over 1 × 283 residue pairs with distance 99.
The floppiness at the tail is due to pure sampling and to the fact that the two ends of a domain are
free to be at any relative position in, but usually at the boundary of, the domain. The dotted and
the dashed curves indicate almost linear decays for shorter and longer backbone distances.

Re point (D). Some Gauss integrals were found to be correlated in [12]. The clearest
correlation is shown on the left-hand side in figure 3. It is not known at this point whether
one should just throw away one of these apparently redundant measures or whether the width
of this point cloud, shown to the left in figure 3, is a new good structural measure. In order
to resolve this, I perform a non-linear Gram–Schmidt orthonormalization-like procedure in
which the more complicated Gauss integrals are successively made independent of the less
complicated Gauss integrals. The starting point for this procedure is my observation that when
averaging over many domains with the same number of residues, the unsigned probability of
crossing between two line segments, i.e., |W (i1, i2)|, of the carbon alpha path decays with the
distance along the backbone in a characteristic way. See the right-hand side of figure 3.
The average unsigned crossing probability is sampled from more than 24 000 CATH2.4
domains and is approximated by a function of the domain size and of the distance along the
backbone. Details can be found in appendix A. This knowledge of the ‘average entanglement
distribution’ along the backbone of protein domains is then used to make estimates of the more
involved Gauss integrals when given the values of the simpler Gauss integrals. Details can
be found in appendix B. Table 1 shows that 14 of the 29 Gauss integrals may be successfully
estimated. At this point it is not known whether each of these 14 Gauss integrals should be
discarded or whether subtraction of the estimate, denoted as E , from the value of the Gauss
integral, I , gives a good measure, denoted as I − E , of the deviation from the average protein
structure.

The range of each Gauss integral, or of the Gauss integral minus its estimate, is bounded
by the length of the protein as |I | or |I − E | < C(#residues)α , where C and α depend on
the Gauss integral only. The αs are estimated as illustrated on the left-hand side of figure 4
and can be found in table 1. From now on, each structural measure is made size independent
by division by (#residues)α . The distribution shown in figure 4 on the right is much more
independent than the original Gauss integrals, shown in figure 3. However, the level of ‘noise’
may have been raised considerably by this procedure.
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number of residues. The straight line is chosen as the line with least mean square distance to the
staircase line. Right: the rescaled writhe, M(1,2) = I(1,2)/(#residues)0.92, is plotted together with
the measure M(1,2)(3,4) given by I(1,2)(3,4) minus its estimate and divided by (#residues)1.01.

Re point (B). The metric demand is here investigated for each structural measure by itself
and not for the entire set of measures gathered in one feature space. This is needed both
to define the signal-to-noise ratio below and since it is not known which measures to keep
and which to throw away at this step of the analysis. A final descriptor D should fulfil the
requirement that |D(S + δS) − D(S)| ≈ RMSc(S + δS, S) ≈ |δS|, where S denotes a protein
structure and δS is a variation of S that is free of translation and rotation. For each structural
measure M a monotonically increasing function φ is introduced, such that D(S) = φ(M(S))

fulfils the metric demand, i.e.,

|φ(M(s)) − φ(M(S + δS))|
|δS| ≈ dφ

dM
(M(S))

〈 |δM|
|δS|

〉
≈ 1. (5)

The average speed at which a measure changes when changing the structure is denoted as
〈 |δM|

|δS| 〉 above and is estimated by performing 100 random variations at the order of 10−4 Å for
each of 1053 CATH2.4 homology class representatives. Each of these perturbations is made
translation and rotation free and preserves neighbouring carbon alpha to carbon alpha distances
to first order.

The rescaling function φ is chosen as a uniform cubic b-spline, i.e., as a piecewise third-
degree polynomial curve. The 50 lowest and the 50 highest values are ignored for each
measure to avoid intervals with few data points. The remaining 1053–100 = 953 equations of
the form dφ

dM 〈 |δM|
|δS| 〉 = 1 are linear in the control points of the spline. The set of control points

that gives the minimal root mean square error on this set of linear equations is found. This
determines the b-spline φ up to an additive constant of integration. The rescaling function is
extended linearly outside the interval containing the 953 measure values and finally the additive
constant is determined by the claim φ(0) = 0. One of the few rescaling functions that is not
approximately linear is shown in figure 5.

Re point (E). When the rescaling functions are applied, all descriptors have the same
uniform noise level of 1 (one). Hence, the standard deviation of each descriptor on a
representative set of protein structures now defines a signal-to-noise ratio. The set of 1053
CATH2.4 homology class representatives minus the 50 lowest and the 50 highest descriptor
values is used as this representative set of protein structures. The signal-to-noise ratios are
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Figure 5. The structural measure I(1,2)(3,4)/(#residues)1.89 is scaled multiplicatively to have
standard deviation 1 on a set of 1053 homology class representatives of CATH2.4 and its
transformation φ as defined in the text.

Figure 6. Left: for the mostly alpha protein 7lzm and beta protein 2abx chain A, the contour lines
of the total curvature for varying a and b in the smoothing procedure given in the text are shown.
Right: the carbon alpha and the smoothed backbone curve of 7lsm for a = 2.4 and b = 2.1.

reported in table 1 and are of the order of 0.3–3 Å. These ratios are surprisingly low given that
the Gauss integrals separate fold classes.

The Gauss integrals depend not only on the curve but also on the curve’s tangent image,
which here is the curve on the unit 2-sphere connecting the carbon alpha to carbon alpha unit
vectors along the backbone. A way to minimize the noise coming from perturbations of the
tangents of the curve is to smooth the carbon alpha path locally by exchanging all Cαi with
Cnew

i = (Cαi−2 +a×Cαi−1 +b×Cαi +a×Cαi+1 +Cαi+2 )/(2+2×a +b), where a and b are chosen to
minimize the length of the tangent image of the smoothed curve, or in other words to minimize
the total curvature of the smoothed curve. The choice a = 2.4 and b = 2.1 minimizes total
curvature for all main types of protein structure,as illustrated in figure 6. The deformation from
the carbon alpha curve to the smoothed curve is only performed to the extent that it can be done
without self-intersections. This smoothed representation is used in [29]. The above analysis
of the Gauss integrals carries over into the case of the smoothed representation and the data
are shown in table 2. The two main differences are: (1) the Gauss integrals of the smoothed
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Table 2. This table concerns the smoothed backbone. The row |Smooth backbone| concerns the
length of the smoothed backbone which is estimated by the number of residues. Otherwise this
table is similar to table 1.

Correlation Growth rate Signal-to-noise ratio
Gauss integral coefficient I/(I − E) I/(I − E) Choice Priority

|Smooth backbone| 0.974 0.98/0.92 20.6/20.4 | · | − E 10
I(1,2) — 0.79/— 26.9/— I 7
I|1,2| 0.899 1.28/1.01 36.5/35.7 I − E 4
I(1,2)(3,4) 0.565 1.68/1.56 13.9/16.1 I 15
I|1,2|(3,4) a 0.558 2.23/1.88 18.8/21.2 I 12
I(1,2)|3,4| a 0.546 2.25/1.92 19.0/21.5 I 11
I|1,2||3,4| 0.471 2.87/1.50 26.7/44.4 I 8
I(1,3)(2,4) 0.466 1.29/1.24 11.0/15.7 I 18
I|1,3|(2,4) b 0.222 1.53/1.34 33.3/36.4 I 6
I(1,3)|2,4| b 0.161 1.63/1.48 37.8/36.1 I 2
I|1,3||2,4| 0.222 2.28/0.93 37.5/55.5 I 3
I(1,4)(2,3) 0.614 1.36/1.27 16.8/15.9 I 13
I|1,4|(2,3) 0.612 2.11/1.47 23.1/26.6 I 9
I(1,4)|2,3| 0.321 1.87/1.76 45.0/38.9 I 1
I|1,4||2,3| 0.315 2.55/0.94 35.5/57.9 I 5
I(1,2)(3,4)(5,6) 0.999 2.74/1.37 9.9/12.5 I − E 17
I(1,2)(3,5)(4,6) c 0.978 2.02/1.45 12.0/8.7 I − E 27
I(1,2)(3,6)(4,5) d 0.915 1.99/1.51 11.5/10.2 I − E 20
I(1,3)(2,4)(5,6) c 0.976 2.24/2.06 11.2/9.1 I − E 25
I(1,3)(2,5)(4,6) 0.852 1.76/1.57 7.8/9.0 I 30
I(1,3)(2,6)(4,5) e 0.709 1.50/1.44 9.3/9.2 I 24
I(1,4)(2,3)(5,6) d 0.905 2.24/2.01 11.6/10.0 I − E 21
I(1,4)(2,5)(3,6) 0.762 1.15/1.09 8.7/8.0 I 28
I(1,4)(2,6)(3,5) f 0.441 1.15/0.99 7.8/8.2 I 29
I(1,5)(2,3)(4,6) e 0.777 1.66/1.64 9.9/9.0 I 22
I(1,5)(2,4)(3,6) f 0.227 1.94/1.91 9.3/9.2 I 23
I(1,5)(2,6)(3,4) 0.351 1.74/1.76 11.0/10.4 I 19
I(1,6)(2,3)(4,5) 0.949 2.42/1.88 12.1/14.2 I − E 14
I(1,6)(2,4)(3,5) 0.818 1.78/1.75 8.8/8.1 I 26
I(1,6)(2,5)(3,4) 0.870 1.80/1.72 13.5/10.2 I 16

backbone are more independent than those of the carbon alpha path and (2) the signal-to-noise
ratios have improved and now lie between 7.8 and 45 Å. Hence, the best descriptor, by itself,
can be used to detect deformations at the order of 100 Å. The reason for (1) is that helices
give very local and numerically very large contributions to all the Gauss integrals. The range
of each Gauss integral of the carbon alpha curve is therefore partly given by the amount of
helices and partly by the size of the protein. On smoothing the representation, both helices
and strands become almost straight line segments and the Gauss integrals can only depend on
the topology of proteins, as local geometry is ignored. Interestingly, in [29] it is found that
SCOP domains still cluster according to their secondary-structure classification when using
the smoothed representation, which in [29] is expected to be caused by the inherent differences
in overall packing patterns between protein folds of different types of secondary structure [30].

5. Which measures do we use?

The decision on whether to use a Gauss integral or the Gauss integral minus its estimate is
based on the author’s studies of the distributions of all the descriptor values and is equivalent
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Figure 7. Ordering the descriptors of the smoothed backbone as in table 2, the bio-signal-to-noise
ratio defined in the text is shown at the five first levels of the CATH classification system.

to the simple rule: ‘If the coefficient of correlation between a Gauss integral and its estimate
is greater than 0.9, then the estimate is subtracted’. In tables 1 and 2 the final descriptors are
ordered from a differential geometric point of view, namely after decreasing signal-to-noise
ratios.

A structural biological rather than a differential geometric test of the descriptive power of
the descriptors is based on a data set of 21 026 connected CATH2.4 domains with at most three
carbon alphas missing. This data set covers 4, 37, 590, 1054, and 2292 classes at the C, A, T,
H, and S classification levels respectively. Figure 7 is based on the smoothed backbone and
shows, for each of the five classification levels, the ratio between the standard deviation of the
descriptor values and the average standard deviation of the descriptor values within the classes.
This bio-signal-to-noise ratio generally decreases with the ordering of the descriptors at the T,
H, and S levels. There are even clear linear correlations between this bio-signal-to-noise ratio
and the differential geometric signal-to-noise ratio at the sixth and seventh classification levels
of CATH that both require very high sequences and structural similarity.

The bio-signal-to-noise ratios of the descriptors of the carbon alpha path are lower than
but in the same range as those of the descriptors of the smoothed backbone. On average, the
bio-signal-to-noise ratios of the best 12 descriptors have gained 32% at the T level and 38%
at the H level through the smoothing procedure, whereas the bio-signal-to-noise ratios of the
remaining descriptors are almost unchanged. The calculation times of the Gauss integrals with
four and six, respectively, indices depend on the number of residues to the second and third,
respectively, powers. With a given application in mind, an obvious idea is to test whether
sufficient descriptive power is obtained without using the Gauss integrals with six indices.

6. Are protein domains highly entangled?

A scaling law of the average crossing number, I|1,2|, is known for all space curves with a
fixed radius. In fact a (closed) space curve of length L and radius R has average crossing
number [31]

I|1,2| � 11

4π

(
L

R

)(4/3)

. (6)
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Figure 8. Left: a double-logarithmic plot of the number of residues versus the average crossing
number of 1053 homology class representatives of CATH2.4 is shown together with the two upper
bounds on the average crossing number given by Buck [31, 32]. The upper bounds are based on
setting the distance between neighbouring carbon alpha atoms to 3.8 Å and setting the radius of
the backbone to 2 Å. Right: the scaling laws of the Gauss integrals I(1,4)(2,6)(3,5) and I(1,5)(2,4)(3,6)

are found, as in figure 4. The two Gauss integrals are found not to obey the same scaling law.

On the CATH2.4 domains this growth rate is found to be 1.37, which is close to the four-thirds
power law. However, as illustrated in figure 8 on the right, the constant in the upper bound
given by Buck [31] seems high, as also predicted in [32], when applied to protein domains
where the constant may be divided by a factor of at least 20. This figure also includes the

upper bound I|1,2| � 1
16π

(
L
R

)2
given in [32]. Protein domains are compact and attain thus

average crossing numbers following the 4
3 power law [33]. However, protein domains seem

not highly entangled. For example, the high entanglement with distant parts of the curve as
seen for highly twisted rubber bands is mostly absent in proteins. In fact the writhe of such a
rubber band grows at least with the length of the rubber band and not just with the length to the
power of 0.92 (or 0.79 in the case of the smoothed backbone) as found for protein domains.
The average crossing number of a closed curve is bounded from below by a so-called crossing
number of the knot type,which is the minimal number of crossings seen in any planar projection
of any deformation of that particular knot type. Hence, also the absence of ‘knots’ in most
proteins [34], that has the likely explanation of the stickiness of the protein chains [35], points
towards a low entanglement of proteins. This raises the question of whether protein domains
are maximally entangled, which challenges our understanding of the larger scale mechanisms
of the protein folding process.

7. A broken symmetry

Only in the case of the average crossing number is an optimal scaling law known. However,
the following symmetry argument shows that at least the Gauss integral I(1,4)(2,6)(3,5) does not
grow optimally on protein domains. If the direction of traversal of the carbon alpha path
is reversed, then the pairs of Gauss integrals I|1,2|(3,4) and I(1,2)|3,4|, I|1,3|(2,4) and I(1,3)|2,4|,
I(1,2)(3,5)(4,6) and I(1,3)(2,4)(5,6), I(1,2)(3,6)(4,5) and I(1,4)(2,3)(5,6), I(1,3)(2,6)(4,5) and I(1,5)(2,3)(4,6),
and, finally, I(1,4)(2,6)(3,5) and I(1,5)(2,4)(3,6) get pairwise interchanged. The remaining Gauss
integrals considered here are unchanged under reversal of the direction of traversal. On the set
of all self-avoiding polygonal space curves with fixed radius the above pairs of Gauss integrals
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share the same scaling law. As illustrated on the right-hand side of figure 8, the scaling laws
of the Gauss integrals I(1,4)(2,6)(3,5) and I(1,5)(2,4)(3,6) found on CATH2.4 domains break this
symmetry. This symmetry is broken both by the carbon alpha path and by the smoothed
backbone. Except for the pair I|1,2|(3,4) and I(1,2)|3,4| the other symmetries appear to be broken,
especially by the smoothed backbone. An example of such behaviour is shown by a ball of
yarn where the first part of the yarn forms the core and is geometrically different from the last
part of the yarn. This suggests that the start and the end of protein chains should not be treated
equally when dealing with protein structure prediction and constitutes a benchmark for our
understanding of protein folding.

8. Conclusion

With the aim of bringing protein structure comparison from relative comparison of known
examples to absolute description of each individual protein structure, I have presented a
framework for evaluating protein structure descriptors. The case of a Gauss integral based
family of descriptors is then studied in detail. Correlations between half of the original
descriptors are identified and removed. Furthermore, the descriptors are made independent of
the size of the protein. Through a differential geometric demand I have made the weights of
the descriptors at the most indirectly dependent on the set of protein structures used to define
them and I have used this to define a signal-to-noise ratio for protein structure description. An
algorithm for smoothing the backbone that improves the descriptor signal-to-noise ratios is
presented.

The set of all CATH2.4 domains are here found clearly to break a symmetry under reversal
of their direction of traversal. It is thus a challenge for any large scale protein or polymer model
to explain this broken symmetry.
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Appendix A

More than 24000 CATH2.4 domains are used to analyse the average unsigned crossing
probability of native folded protein backbones. The average crossing probability 〈|W |〉 is
sampled as a function of the number of residues in the domain 10 < L < 900 and of the
distance along the backbone l counted in residues. Furthermore, for each domain size L
and backbone distance l one notes how many times, denoted as #eq , |W |(L, l) appears in
the calculation of the average crossing numbers of all these domains. The right-hand side of
figure 3 suggests locally approximating 〈|W |〉 with lα , where α is a function of the size of the
domain. This suggests approximating with functions such as

eS = e(a+b log(l)+c log(L)+d log(l) log(L)), (A.1)

where S is shorthand for a degree 1 spline in log(l) and log(L). The objective is to minimize
the total error ε#eq , where ε is given by

〈|W |〉 + ε = eS . (A.2)
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After division by 〈|W |〉 and taking the logarithm, we have

log

(
1 +

ε

〈|W |〉
)

= S − log(〈|W |〉). (A.3)

On splitting log(1 + ε
〈|W |〉 ) into its first-order Taylor expansion around ε = 0, ε

〈|W |〉 , and the
remaining higher order term in square brackets, i.e., the identity

log

(
1 +

ε

〈|W |〉
)

= ε

〈|W |〉 +

[
log

(
1 +

ε

〈|W |〉
)

− ε

〈|W |〉
]

, (A.4)

a linear error estimate is given by

ε = 〈|W |〉S − 〈|W |〉 log(〈|W |〉) +

[
ε − 〈|W |〉 log

(
1 +

ε

〈|W |〉
)]

, (A.5)

where the square bracket, h = [ε − 〈|W |〉 log(1 + ε
〈|W |〉 )], again holds the higher order terms.

Setting h = h0 = 0 corresponds to replacing log(1 + ε
〈|W |〉 ) by the first term of its Taylor

expansion ε
〈|W |〉 around ε = 0. The starting point of the minimization is to find a1, b1, c1, d1,

and ε1 that minimize

ε1#eq = (〈|W |〉S(a1, b1, c1, d1) − 〈|W |〉 log(〈|W |〉) + h0) #eq, (A.6)

for all L and l. Note that this problem is linear in the control points of any spline function, S,
used. Now set ε1 = eS(a1,b1,c1,d1) − 〈|W |〉 and set

h1 = ε1 − 〈|W |〉 log

(
1 +

ε1

〈|W |〉
)

(A.7)

and repeat the procedure. The general step is thus: find an , bn , cn , dn , and εn that minimize
the root mean square of

εn#eq = (〈|W |〉S(an, bn, cn, dn) − 〈|W |〉 log(〈|W |〉) + hn−1) #eq, (A.8)

for all L and l. Set εn = eS(an,bn ,cn ,dn) − 〈|W |〉 and set

hn = εn − 〈|W |〉 log

(
1 +

εn

〈|W |〉
)

. (A.9)

A degree 1 spline with 62 knots (free parameters) in the trapezium given by 12 � L � 877
and 1 < l < L was used in the final approximation. Both the total error and the underlying
spline converged under iteration.

Appendix B

Estimates of the Gauss integrals that only involve the absolute values of W can be calculated
for each domain length L by use of the average crossing probability distribution along the
backbone, 〈|W |〉(L, l), established in appendix A. For example,

I est0
|1,2||3,4|(L) =

∑

0<i1<i2<i3<i4<L

〈|W |〉(L, i2 − i1)〈|W |〉(L, i4 − i3). (B.1)

The ratios R1 = I(1,2)

I
est0
|1,2|

and R2 = I|1,2|
I

est0
|1,2|

are introduced for obtaining estimates of the

Gauss integrals involving the signed W also. Now, e.g., a ‘first’ estimate of I(1,2)(3,4) is
I est1
(1,2)(3,4) = I est0

|1,2||3,4| × R1 × R1. These first estimates use the implicit, and wrong, assumption
that the signed W is a constant times its absolute value. However, this first estimate is a
good estimate up to a multiplicative constant; see figure B.1. From now on, I est

(1,2)(3,4) etc

denote I est1
(1,2)(3,4) times the best possible multiplicative constant. The coefficients of correlation
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between the Gauss integrals with four indices and their estimates are contained in table 1.
From these correlation coefficients and visual inspection, seven out of the twelve estimates
are found to be good. Note that the average crossing number, I|1,2|, shows only little deviation
from its estimate and hence from being a function of the length of the domain.

The estimates of the third-order Gauss integrals are not close except for the case of
I(1,2)(3,4)(5,6) and to some extent also for I(1,2)(3,5)(4,6), I(1,2)(3,6)(4,5) and I(1,3)(2,4)(5,6). However,
there is more information for building estimates on, namely all the second-order Gauss
integrals. Renaming some indices in the product

I(1,2) I(1,3)(2,4) =
∑

0<i1<i2<N

W (i1, i2)
∑

0<i3<i4<i5<i6<N

W (i3, i5)W (i4, i6), (B.2)

it is clear that all terms corresponding to i2 < i3 are also present in

I(1,2)(3,5)(4,6) =
∑

0<i1<i2<i3<i4<i5<i6<N

W (i1, i2)W (i3, i5)W (i4, i6). (B.3)

Hypothetically, there will be a very close relation between I(1,2) I(1,3)(2,4) and I(1,2)(3,5)(4,6) if
the integrals involved are independent of sliding their domains of integration up and down the
backbone. The best fit of a linear combination of I(1,2) I(1,3)(2,4), I(1,2) I(1,3)(2,4), I(1,2) I(1,3)(2,4),
and the previous estimates over 1053 H-class representatives of CATH2.4 is obtained to
improve the estimates of the third-order Gauss integrals. Table 1 and visual inspection reveal
that 6 out of the 15 third-order Gauss integrals have good estimates. All in all, 14 of the
29 Gauss integrals are found to be closely given by length of the domains and by lower order
Gauss integrals.
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